NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.6

NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.6

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-9 (Determinants)Exercise 9.6 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.6

Exercise 9.6

Q1. 

Answer. The given differential equation is dydx+2y=sinx This is in the form of dydx+py=Q( where p=2 and Q=sinx) Now, I.F =epdt=e2dx=e2x The solution of the given differential equation is given by the relation, y(IF)=(Q×IF)dx+Cye2x=sinxe2xdx+C      ...(i)  Let I=sinxe2xI=sinxe2xdx(ddx(sinx)e2xdx)dxI=sinxe2x2 (cosxe2x2)dx I=e2xsinx212[cosxe2xddx(cosx)e2xdx)dx]I=e2xsinx212[cosxe2x2(sinx)e2x2]dx]I=e2xsinx2e2xcosx414(sinxe2x)dxI=e2x4(2sinxcosx)14I54I=e2x4(2sinxcosx)I=e2x5(2sinxcosx) 

Q2. 

Answer.   The given differential equation is  dydx+py=Q( where p=3 and Q=e2x) Now, I.F =epΔx=e3at=e3x The solution of the given differential equation is given by the relation, y( I.F. )=(Q× I.F. )dx+Cye3x=(e2x×e3x)+Cye3x=exdx+Cye3x=ex+Cy=e2x+Ce3x This is the required general solution of the given differential equation

Q3. 

Answer.  The given differential equation is: dydx+py=Q( where p=1x and Q=x2) Now, I.F =epdx=e1xdx=elogx=x 

Q4. 

Answer.  The given differential equation is: dydx+py=Q (where p=secx and Q=tanx) Now I.F =epΔx=esecxdx=elog(secx+tanx)=secx+tanx  The general solution of the given differential equation is given by the relation, y( I.F. )=(Q×1.F.)dx+Cy(secx+tanx)=tanx(secx+tanx)dx+Cy(secx+tanx)=secxtanxdx+tan2xdx+C 

Q5. 

Answer.  Let I=jπ2cos2xdxcos2xdx=(sin2x2)=F(x) By second fundamental theorem of calculus, we obtain  

Q6. 

Answer.  The given differential equation is: xdydx+2y=x2logxdydx+2xy=xlogx This equation is in the form of a linear differential equation as: dydx+py=Q( where p=2x and Q=xlogx) Now I.F = epdx=ex2dx=e2logx=elogx2=x2 The general solution of the given differential equation is given by the relation, y( I.F. )=(Q×I.F.)dx+Cyx2=(xlogxx2)dx+Cx2y=(x3logx)dx+C x2y=logxx3dx[ddx(logx)x3dx]dx+Cx2y=logxx441xx44)dx+Cx2y=x4logx414x3dx+C 

Q7. 

Answer.  The given differential equation is: xlogxdydx+y=2xlogxdydx+yxlogx=2x2 This equation is the form of a linear differential equation as: dydx+py=Q( where p=1xlogx and Q=2x2) Now, I.F =eρdx=e1xlogdx=elog(logx)=logx The general solution of the given differential equation is given by the relation, y(I.F.)=(Q×I.F)dx+Cylogx=(2x2logx)dx+C     ...(i) Now. (2x2logx)dx=2(logx1x2)dx =2[logx1x2dx{ddx(logx)1x2dx}dx]=2[logx(1x)(1x(1x))dx]=2[2[logxx+1x2dx]=2[logxx1x]=2[logxx1x]=2x(1+logx) 

Q8. 

Answer. (1+x2)dy+2xydx=cotxdxdydx+2xy1+x2=cotx1+x2 This equation is a linear differential equation of the form: dydx+py=Q (where p=2x1+x2 and Q=cotx1+x2) =epdx=e2x1+x2dx=elog(1+x2)=1+x2 

Q9. 

Answer. xdydx+yx+xycotx=0xdydx+y(1+xcotx)=xdydx+(1x+cotx)y=1 This equation is a linear differential equation of the form: dydx+py=Q( where p=1x+cotx and Q=1) Now, I.F =e pdx=e(1xcotx)dx=elogx+log(sinx)=elog(xsinx)=xsinx The general solution of the given differential equation is given by the relation, y(IF.)=(Q×I.F.)dx+Cy(xsinx)=(1×xsinx)dx+Cy(xsinx)=(xsinx)dx+Cy(xsinx)=xsinxdx[ddx(x)sinxdx]+C 

Q10. 

Answer. (x+y)dydx=1dydx=1x+ydxdy=x+ydxdyx=y This is a linear differential equation of the form: dydx+px=Q( where p=1 and Q=y) Now, I.F =epdy=edy=ey The general solution of the given differential equation is given by the relation, x(I.F.)=(Q×L.F.)dy+C 

Q11. 

Answer. ydx+(xy2)dy=0ydx=(y2x)dydxdy=y2xy=yxydxdy+xy=y This is a linear differential equation of the form:  dydx+px=Q( where p=1y and Q=y) Now, I.F =eρdy=e1ydy=elogy=y The general solution of the given differential equation is given by the relation, 

Q12. 

Answer. (x+3y2)dydx=ydydx=yx+3y2dxdy=x+3y2y=xy+3ydxdyxy=3y This is a linear differential equation of the form: dxdy+px=Q (where p=1y and Q=3y) Now, I.F =epdy=eydy=elogy=elog(1y)=1y The general solution of the given differential equation is given by the relation, 

Q13. 

Answer.  The given differential equation is dx  dydx+2ytanx=sinx This is a linear equation of the form: dydx+py=Q (where p=2tanx and Q=sinx) Now, I.F =epdx=e2tanxdx=e2log|secx|=elog(sec2x)=sec2x The general solution of the given differential equation is given by the relation, y(I.F.)=(Q×I.F.)dx+C y(sec2x)=(sinxsec2x)dx+Cysec2x=(secxtanx)dx+Cysec2x=secx+C     ...(i) y=0 at x=π3 Therefore, 0×sec2π3=secπ3+C0=2+CC=2 Substituting C=2 in equation (i), we get:  

Q14. 

Answer. (1+x2)dydx+2xy=11+x2dydx+2xy1+x2=1(1+x2)2 This is a linear differential equation of the form: dydx+py=Q (where p=2x1+x2 and Q=1(1+x2)2) Now, I.F =epdx=e2xdx1+x2=elog(1+x2)=1+x2  The general solution of the given differential equation is given by the relation, y( I.F. )=(Q× I.F. )dx+C y(1+x2)=1(1+x2)2(1+x2)]dx+Cy(1+x2)=11+x2dx+Cy(1+x2)=tan1x+C   ..(i) Now, y=0 at x=1 Therefore, 0=tan11+CC=π4 

Q15. 

Answer. The given differential equation is dydx3ycotx=sin2x This is a linear differential equation of the form: dydx+py=Q (where p=3cotx and Q=sin2x) Now, I.F epdx=e3cotxdx=e3log|sinx|=elog|1sin3x|=1sin3x  The general solution of the given differential equation is given by the relation, y( I.F. )=(Q× I.F. )dx+C y1sin3x=[sin2x1sin3x]dx+Cycsc3x=2(cotxcscx)dx+Cycsc3x=2cscx+Cy=2csc2x+3csc3xy=2sin2x+Csin3x    ...(i) y=2 at x=π2 Therefore, we get: 2=2+CC=4 Substituting C=4 in equation (i), we get: y=2sin2x4sin3xy=4sin3x2sin2x This is the required particular solution of the given differential equation.

Q16. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

Answer.  Let F(x,y) be the curve passing through the origin.  At point (x,y) , the slope of the curve will be dydx According to the given inforve will be dydxdydx=x+y dydxy=x This is a linear differential equation of the form: dydx+py=Q( where p=1 and Q=x) Now, I.F =epdx=e(1)dx=ex  The general solution of the given differential equation is given by the relation, y( I.F. )=(Q× I.F. )dx+C yex=xexdx+C(i) Now, xexdx=xexdx[ddx(x)exdx]dx=xexexdx=xex+(ex)=ex(x+1)  Substituting in equation (i), we get: yex=ex(x+1)+Cy=(x+1)+Cexx+y+1=Cex    ...(ii) The curve passes through the origin.  Therefore, equation (ii) becomes:  

Q17. Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.

Answer.  Let F(x,y) be the curve and let (x,y) be a point on the curve. The slope of the tangent  to the curve at (x,y) is dydx According to the given information: dydx+5=x+y dydxy=x5 This is a linear differential equation of the form: dydx+py=Q (where p=1 and Q=x5) Now, I.F =eρdx=e[(1)dx=ex  The general equation of the curve is given by the relation, y( I.F. )=(Q×1.F.)dx+C yex=(x5)exdx+C     ...(i) Now, (x5)exdx=(x5)exdx[ddx(x5)exdx]dx=(x5)(ex)(ex)dx=(5x)ex+(ex)=(4x)ex  Therefore, equation (i) becomes: yex=(4x)ex+Cy=4x+Cexx+y4=Cex The curve passes through point (0,2). Therefore, equation (ii) becomes: 0+24=Ce0 

Q18. 

Answer.  The given differential equation is: xdydxy=2x2dydxyx=2x This is a linear differential equation of the form: dydx+py=Q (where p=1x and Q=2x) The integrating factor (I.F) is given by the relation, epdx I.F=e1xdx=elogx=elog(x1)=x1=1x Hence, the correct answer is C.

Q19.  The integrating factor of the differential equation. (1y2)dxdy+yx=ay(1<y<1) 

Answer.  The given differential equation is: (1y2)dxdy+yx=aydydx+yx1y2=ay1y2 This is a linear differential equation of the form: dxdy+py=Q (where p=y1y2 and Q=ay1y2) The integrating factor (I.F) is given by the relation,  eρdx I.F=epdy=ey1y2dy=e12log(1y2) =elog[11y2]=11y2 Hence, the correct answer is D.

Chapter-9 (Determinants)