NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.5
NCERT Solutions Class 12 Maths from class
12th Students will get the answers of
Chapter-9 (Determinants)Exercise 9.5 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 9.5
Q1. (x2+xy)dy=(x2+y2)dx
Answer. The given differential equation i.e., (x2+xy)dy=(x2+y2)dx can be written as: dydx=x2+y2x2+xy ...(i) Let F(x,y)=x2+y2x2+xy Now, F(λx,λy)=(λx)2+(λy)2(λx)2+(λx)(λy)=x2+y2x2+xy=λ0⋅F(x,y) This shows that equation (i) is a homogeneous equation. To solve it, we make the substitution as: y=vx Differentiating both sides with respect to x, we get: dydx=v+xdvdx Substituting the values of v and dydx in equation (i), we get: v+xdvdx=x2+(vx)2x2+x(vx)⇒v+xdvdx=1+v21+v⇒xdvdx=1+v21+v−v=(1+v2)−v(1+v)1+v⇒xdvdx=1−v1+v ⇒(1+v1−v)=dv=dxx⇒(2−1+v1−v)dv=dxx⇒(21−v−1)dv=dxx Integrating both sides, we get: ⇒v=−2log(1−v)−logx+logk⇒v=log[kx(1−v)2] ⇒yx=log[kx(1−yx)2]⇒yx=log[kx(x−y)2]⇒kx(x−y)2=ex⇒(x−y)2=kxe−yx This is the required solution of the given differential equation.
Q2. y′=x+yx
Answer. y′=x+yx⇒dydx=x+yx ...(i)LetF(x,y)=x+yx Now, F(λx,λy)=λx+λyλx=x+yx=λ0F(x,y) Thus, the given equation is a homogeneous equation. To solve it, we make the substitution as: y=vx Differentiating both sides with respect to x, we get: dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=x+vxx⇒v+xdvdx=1+vxdvdx=1⇒dv=dxx Integrating both sides, we get: v=logx+C⇒yx=logx+C⇒y=xlogx+Cx This is the required solution of the given differential equation.
Q3. (x−y)dy−(x+y)dx=0
Answer. The given differential equation is: (x−y)dy−(x+y)dx=0⇒dydx=x+yx−y ...(i) Let F(x,y)=x+yx−y ∴F(λx,λy)=λx+λyλx−λy=x+yx−y=λ0⋅F(x,y) Thus, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx ⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=x+vxx−vx=1+v1−v xdvdx=1+v1−v−v=1+v−v(1−v)1−v⇒xdvdx=1+v21−v⇒1−v(1+v2)dv=dxx⇒(11+v2−v1−v2)dv=dxx Integrating both sides, we get: tan−1v−12log(1+v2)=logx+C⇒tan−1(yx)−12log[1+(yx)2]=logx+C⇒tan−1(yx)−12log(x2+y2x2)=logx+C ⇒tan−1(yx)−12[log(x2+y2)−logx2]=logx+C⇒tan−1(yx)=12log(x2+y2)+C⇒this is the required solution of the given differential equation.
Q4. (x2−y2)dx+2xydy=0
Answer. The given differential equation is: (x2−y2)dx+2xydy=0⇒dydx=−(x2−y2)2xy ...(i) Let F(x,y)=−(x2−y2)2xy ∴F(λx,λy)=[(λx)2−(λy)22(λx)(λy)]=−(x2−y2)2xy=λ0⋅F(x,y) To solve it, we given differential equation is a homogeneous equation. y=vx ⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dydx equation (i), we get: v+xdvdx=−x2−(vx)22x⋅(vx)]v+xdvdx=v2−12v ⇒xdvdx=v2−12v−v=v2−1−2v22v⇒xdvdx=−(1+v2)2v⇒2v1+v2dv=−dxx Integrating both sides, we get: log(1+v2)=−logx+logC=logCx ⇒1+v2=Cx⇒[1+y2x2]=Cx⇒x2+y2=Cx This is the required solution of the given differential equation.
Q5. x2dydx−x2−2y2+xy
Answer. The given differential equation is: x2dydx=x2−2y2+xy dydx=x2−2y2+xyx2 ...(i)LetF(x,y)=x2−2y2+xyx2∴F(λx,λy)=(λx)2−2(λy)2+(λx)(λy)(λx)2=x2−2y2+xyx2=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=x2−2(vx)2+x⋅(vx)x2⇒v+xdvdx=1−2v2+v⇒xdvdx=1−2v2⇒dv1−2v2=dxx⇒12⋅dv12−v2=dxx ⇒12⋅⎡⎣dv(1√2)2−v2⎤⎦=dxx Integrating both sides, we get : 12⋅12×1√2log∣∣∣1√2+v1