NCERT Solutions Class 12 Maths (Application Of Integrals) Miscellaneous Exercise

NCERT Solutions Class 12 Maths (Application Of Integrals) Miscellaneous Exercise

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-8 (Application Of Integrals) Miscellaneous Exercise This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 Maths (Application Of Integrals) Miscellaneous Exercise

Q1. 

Answer. (i) The required area is represented by the shaded area ADCBA as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise  Area ADCBA=2ydx=x2dx=[x33]12=8313=73 units  (ii) The required area is represented by the shaded area ADCBA as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise 

Q2. Find the area between the curve 

Answer. The required area is represented by the shaded area OBAO as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise  The points of intersection of the curves, y=x and y=x2, is A(1,1) .  We draw AC perpendicular to x -axis.   Area (OBAO)= Area (ΔOCA) Area (OCABO) (i) 

Q3. 

Answer.  The area in the first quadrant bounded by y=4x2,x=0,y=1, and y=4 is  represented by the shaded area ABCDA as  Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise  Area ABCD=x1xdx=y2dx 

Q4. Sketch the graph of y=|x+3| and evaluate 60|x+3|dx

Answer.  The given equation is y=|x+3| The corresponding values of x and y are given in the following table.  Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise On plotting these points, we obtain the graph of y=|x+3| as follows. Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise  It is known that, (x+3)0 for 6x3 and (x+3)0 for 3x060(x+3)dx=63(x+3)dx+30(x+3)dx=[x22+3x]63+[x22+3x]30 

Q5. Find the area bounded by curve 

Answer. The graph of y = sin x can be drawn as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise ∴ Required area = Area OABO + Area BCDB 

Q6. Find the area enclosed between the parabola y2 = 4ax and the line y = mx

Answer. The area enclosed between the parabola, \(y^{2} = 4ax, and the line, y = mx, is represented by the shaded area OABO as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise  The points of intersection of both the curves are (0,0) and (4dm2,4am) we draw AC perpendicular to x -axis.  ∴ Area OABO = Area OCABO – Area (ΔOCA) Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise 

Q7. Find the area enclosed by the parabola 4y=3x2 and the line 2y=3x+12

Answer. The area enclosed between the parabola 4y=3x2 and the line 2y=3x+12 is represented by the shaded area OBAO as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise The points of intersection of the given curves are A (–2, 3) and (4, 12). We draw AC and BD perpendicular to x-axis. ∴ Area OBAO = Area CDBA – (Area ODBO + Area OACO) =2412(3x+12)dx213x24dx=12[3x22+12x]2434[x33]24 

Q8. 

Answer. The area of the smaller region bounded by the ellipse, x29+y24=1 and the line, x3+y2=1 is represented by the shaded region BCAB as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise ∴ Area BCAB = Area (OBCAO) – Area (OBAO) =0321x29dx032(1x3)dx=23[039x2dx]2303(3x)dx=23[x29x2+92sin1x3]0323[3xx22]03 

Q9. Find the area of the smaller region bounded by the Find the area of the smaller region bounded by the ellipse 

Answer. The area of the smaller region bounded by the ellipse, x2a2+y2b2=1 and the line xa+yb=1 is represented by the shaded region BCAB as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise ∴ Area BCAB = Area (OBCAO) – Area (OBAO) =0ab1x2a2dxbab(1xa)dx=ba00a2x2dxba0a(ax)dx 

Q10. Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis

Answer. The area of the region enclosed by the parabola, x2 = y, the line, y = x + 2, and x-axis is represented by the shaded region OACO as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise  The point of intersection of the parabola, x2=y, and the line, y=x+2, is A(1,1) .  Area OABCO = Area (BCA)+ Area COAC  

Q11.  Using the method of integration find the area bounded by the curve |x|+|y|=1 [Hint: the required region is bounded by lines x+y=1,xy=1,x+y=1 and xy=11]

Answer.  The area bounded by the curve, |x|+|y|=1 , is represented by the shaded region ADCB as  Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise The curve intersects the axes at points A (0, 1), B (1, 0), C (0, –1), and D (–1, 0). It can be observed that the given curve is symmetrical about x-axis and y-axis. ∴ Area ADCB = 4 × Area OBAO 

Q12. Find the area bounded by curves {(x,y):yx2 and y=|x|}

Answer. The area bounded by the curves, {(x,y):yx2 and y=|x|}, is represented by the shaded region as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise It can be observed that the required area is symmetrical about y-axis. 

Q13. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A (2, 0), B (4, 5) and C (6, 3)

Answer. The vertices of ΔABC are A (2, 0), B (4, 5), and C (6, 3). Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise Equation of line segment AB is  Equation of line segment AB is y0=5042(x2)2y=5x10y=52(x2)   ...(i) Equation of line segment BC is  y5=3564(x4)2y10=2x+82y=2x+18y=x+9   ...(ii) Equation of line segment ca is y3=0326(x6)4y+12=3x+18y=34(x2)   ...(iii) Area (ΔABC) = Area (ABLA) + Area (BLMCB) – Area (ACMA) 

Q14. Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0

Answer. The given equations of lines are 2x + y = 4 … (i) 3x – 2y = 6 … (ii) And, x – 3y + 5 = 0 … (iii) Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise The area of the region bounded by the lines is the area of ΔABC. AL and CM are the perpendiculars on x-axis. Area (ΔABC) = Area (ALMCA) – Area (ALB) – Area (CMB) 

Q15. Find the area of the region {(x,y):y24x,4x2+4y29}

Answer. The area bounded by the curves, {(x,y):y24x,4x2+4y29} is represented as Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise The points of intersection of both the curves are (12,2) and (12,2) The required area is given by OABCO. It can be observed that area OABCO is symmetrical about x-axis. ∴ Area OABCO = 2 × Area OBC Area OBCO = Area OMC + Area MBC 

Q16. Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is 

Answer. Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise 

Q17.  The area bounded by the curve y=x|x|,x -axis and the ordinates x=1 and x=1 is  given by  [Hint: y=x2 if x>0 and y=x2 if x<0]  A. 0 B. 13 C. 23 D. 43

Answer. Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise  Required area =11ydx=1x|x|dx=10x2dx+01x2dx=[x33]10+[x33]01=23 units =23 units  Thus, the correct answer is C.

Q18. The area of the circle x2+y2=16 exterior to the parabola y2=6x 

Answer. The given equations are x2+y2=16(i)y2=6x(ii) Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise Area bounded by the circle and parabola =2[Arca(OADO)+Area(ADBA)]=2[0216xdx+2+16x2dx]=2[6{x322}02]+2[x216x2+162sin1x4]24=26×23[x32]02+2[8π21648sin1(12)] =463(22)+2[4π128π6]=1633+8π4383π=43[43+6π332π]=43[3+4π] Area of circle =n(r)2=16n units  

Q19. The area bounded by the y-axis, y = cos x and y = sin x When 

Answer. The given equations are y = cos x … (i) And, y = sin x … (ii) Solutions Class 12 maths Chapter-8 (Application Of Integrals) Miscellaneous Exercise Required area = Area (ABLA) + area (OBLO) =14xdy+01xdy=1dcos1ydy+012sin1xdy Integrating by parts, we obtain  =[ycos1y1y2]121+[xsin1x+1x2]012=[cos1(1)12cos1(12)+112]+[12sin1(12)+1121]=π42+12+π42+121=221=21 units  Thus, the correct answer is B.   Put 2x=tdx=dt2 When x=32,t=3 and when x=12,t=1=0122xdx+1413(3)2(t)2dt =2[x322]12+14[t29t2+92sin1(t3)]13=2[23(12)32]+14[{329(3)2+92sin1(33)}{129(1)2+92sin1(13)}] =232+14[{0+92sin1(1)}{128+92sin1(13)}]=23+14[9π4292sin1(13)]=23+9π162498sin1(13)=9π1698sin1(13)+212 Therefore , the required area is [2×(9π1698sin1(13)+212)]=9π894sin1(13)+132 units