NCERT Solutions Class 12 Maths (integrals) Miscellaneous Exercise
NCERT Solutions Class 12 Maths from class
12th Students will get the answers of
Chapter-7(integrals) Miscellaneous Exercise This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Q1. Integrate the function 1x−x3
Answer. 1x−x3=1x(1−x2)=1x(1−x)(1+x) Let 1x(1−x)(1+x)=Ax+B(1−x)+C1+x⇒1=A(1−x2)+Bx(1+x)+Cx(1−x)⇒1=A−Ax2+Bx+Bx2+Cx−Cx2 Equating the coefficients of x2 , x, and constant term, we obtain −A+B−C=0B+C=0A=1 On solving these equations, we obtain A=1,B=12, and C=−12 From equation (1), we obtain 1x(1−x)(1+x)=1x+12(1−x)−12(1+x) 1x(1−x)(1+x)=1x+12(1−x)−12(1+x)⇒∫1x(1−x)(1+x)dx=∫1xdx+12∫11−xdx−12∫11+xdx =log|x|−12log|(1−x)|−12log|(1+x)|=log|x|−log∣∣(1−x)12∣∣−log∣∣(1+x)12∣∣=log∣∣
∣∣x(1−x)12(1+x)12∣∣
∣∣+C=log∣∣∣x21−x2∣∣∣+C=12log∣∣∣x21−x2∣∣∣+C
Q2. Integrate the function 1√x+a+√(x+b)
Answer. 1√x+a+√x+b=1√x+a+√x+b×√x+a−√x+b√x+a−√x+b=√x+a−√x+b(x+a)−(x+b)=(√x+a−√x+b)a−b ⇒∫1√x+a−√x+bdx=1a−b∫(√x+a−√x+b)dx=1(a−b)[(x+a)3232−(x+b)3232]=23(a−b)[(x+a)32−(x+b)32]+C
Q3. Integrate the function 1x√ax−x2[ Hint: Put x=at]
Answer. 1x√ax−x2 Let x=at⇒dx=−at2dt ⇒∫1x√ax−x2dx=∫1at√a⋅at−(at)2(−at2dt)=−∫1at⋅1√1t−1t2dt =−1a∫1√t2t−t2t2dt=−1a∫1√t−1dt=−1a[2√t−1]+C=−1a[2√ax−1]+C =−2a(√a−x√x)+C=−2a(√a−xx)+C
Q4. Integrate the function 1x2(x4+1)34
Answer. 1x2(x4+1)34 Multiplying and dividing by x−3 , we obtain x−3x2⋅x−3(x4+1)34=x−3(x4+1)−34x2⋅x−3 =(x4+1)−34x5⋅(x4)34=1x5(x4+1x4)34=1x5(1+1x4)−34 Let 1x4=t⇒−4x5dx=dt⇒1x5dx=−dt4∴∫1x2(x4+1)34dx=∫1x5(1+1x4)−34dx =−14∫(1+t)34dt=−14[(1+t)1414]+C =−14(1+1x4)1414+C=−(1+1x4)14+C
Q5. Integrate the function 1x12+x13⎡⎢⎣ Hint: 1x12+x13=1x13(1+x16), put x=t6⎤⎥⎦
Answer. 1x12+x13=1x13(1+x16) Let x=t6⇒dx=6t5dt ∴∫1x12+x13dx=∫1x13(1+x16)dx=∫6t5t2(1+t)dt=6∫t3(1+t)dt On dividing, we obtain ∫1x12+x13dx=6∫{(t2−t+1)−11+t}dt =6[(t33)−(t22)+t−log|1+t|]=2x12−3x13+6x16−6log(1+x16)+C=2√x−3x13+6x16−6log(1+x16)+C
Q6. Integrate the function 5x(x+1)(x2+9)
Answer. Let 5x(x+1)(x2+9)=A(x+1)+Bx+C(x2+9)….(1)⇒5x=A(x2+9)+(Bx+C)(x+1)⇒5x=Ax2+9A+Bx2+Bx+Cx+C Equating the coefficients of x2,x, and constant term, we obtain A+B=0B+C=59A+C=0 On solving these equations, we obtain A=−12,B=12, and C=92 From equation (1), we obtain 5x(x+1)(x2+9)=−1