NCERT Solutions Class 12 Maths (Determinants) Miscellaneous Exercise

NCERT Solutions Class 12 Maths (Determinants) Miscellaneous Exercise

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-9 (Determinants)Miscellaneous Exercise  This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 Maths (Determinants) Miscellaneous Exercise

Q1. 

Answer.  (i) The differential equation is given as: d2ydx2+5x(dydx)26y=logxd2ydx2+5x(dydx)26ylogx=0 The highest order derivative present in the differential equation is one.  The highest power raised to d2ydx2 is one. Hence, its degree is one.   (ii) The differential equation is given as: (dydx)34(dydx)2+7y=sinx(dydx)34(dydx)2+7ysinx=0 The highest order derivative present in the differential equation is dydx. Thus, its order is one.  The highest power raised to dydx is three. Hence, its degree is three.  

Q2. For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation. (i) y=aex+bex+x2:xd2ydx2+2dydxxy+x22=0(ii) y=ex(acosx+bsinx):d2ydx22dydx+2y=0 

Answer.  (i) y=aex+bex+x2 Differentiating both sides with respect to x, we get: dydx=addx(ex)+bddx(ex)+ddx(x2)dydx=aexbex+2x Again, differentiating both sides with respect to x, we get: d2ydx2=aex+bex+2  Now, on substituting the values of dydx and d2ydx2 in the differential equation, we get:  L.H.S. xd2ydx2+2dydxxy+x22 =x(aex+bex+2)+2(aexbex+2x)x(aex+bex+x2)+x22=(axex+bxex+2x)+(2aex2bex+4x)(axex+bxex+x3)+x22=2aex2bex+x2+6x20 ⇒ L.H.S. ≠ R.H.S. Hence, the given function is not a solution of the corresponding differential equation. (ii) y=ex(acosx+bsinx)=aexcosx+bexsinx Differentiating both sides with respect to x, we get: dydx=addx(excosx)+bddx(exsinx)dydx=a(excosxexsinx)+b(exsinx+excosx)dydx=(a+b)excosx+(ba)exsinxAgain, differentiating both sides with respect to x, we get:d2ydx2=(a+b)ddx(excosx)+(ba)ddx(exsinx) d2ydx2=(a+b)[excosxexsinx]+(ba)[exsinx+excosx]d2ydx2=ex[(a+b)(cosxsinx)+(ba)(sinx+cosx)]d2ydx2=ex[acosxasinx+bcosxbsinx+bsinx+bcosxasinxacosx]d2ydx2=[2ex(bcosxasinx)]  Now, on substituting the values of d2ydx2 and dydx in the L.H.S. of the given differential  equation, we get: d2ydx2+2dydx+2y =2ex(bcosxasinx)2ex[(a+b)cosx+(ba)sinx]+2ex(acosx+bsinx)=ex[(2bsinx2asinx)(2acosx+2bcosx)=ex[(2bsinx2asinx)+(2acosx+2bsinx)]=ex[(2b2a2b+2a)cosx]+ex[(2a2b+2a+2b)sinx]=0 Hence, the given function is a solution of the corresponding differential equation. (iii) y=xsin3x Differentiating both sides with respect to x, we get: dydx=ddx(xsin3x)=sin3x+xcos3x3dydx=sin3x+3xcos3x Again, differentiating both sides with respect to x, we get: d2ydx2=ddx(sin3x)+3ddx(xcos3x) d2ydx2=3cos3x+3[cos3x+x(sin3x)3]d2ydx2=6cos3x9xsin3x Substituting the value of d2ydx2 in the L.H.S. of the given differential equation, we get: d2ydx2+9y6cos3x =(6cos3x9xsin3x)+9xsin3x6cos3x=0 Hence, the given function is a solution of the corresponding differential equation.   (iv) x2=2y2logy Differentiating both sides with respect to x, we get: 2x=2ddx=[y2logy]x=[2ylogydydx+y21ydydx]x=dydx(2ylogy+y)dydx=xy(1+2logy)  Substituting the value of dydx in the L.H.S. of the given differential equation, we get: (x2+y2)dydxxy 

Q3. 

Answer. (xa)2+2y2=a2x2+a22ax+2y2=a22y2=2axx2     ...(i) Differentiating with respect to x, we get: 2ydydx=2a2x2dydx=2ax2x22xydydx=2ax2x24xy     ...(ii)  From equation (i), we get: 2ax=2y2+x2 On substituting this value in equation (ii), we get: dydx=2y2+x22x24xydydx=2y2x24xy Hence, the differential equation of the family of curves is given as 

Q4.  Prove that x2y2=c(x2+y2)2 is the general solution of differential equation (x33xy2)dx=(y33x2y)dy where c is a parameter.

Answer. (x33xy2)dx=(y33x2y)dydydx=x33xy2y33x2y     ...(i) This is a homogeneous equation. To simplify it, we need to make the substitution as: y=vx ddx(y)=ddx(vx)dydx=v+xdvdx  Substituting the values of y and dvdx in equation (i), we get: v+xdvdx=x33x(vx)2(vx)33x2(vx)v+xdvdx=13v2dx=13v2v33vxdvdx=13v2v33vv xdvdx=13v2v(v33v)v33vxdvdx=1v4v33v(v33v1v4)dv=dxx  Integrating both sides, we get: (v33v1v4)dv=logx+logC    (ii) Now, (v33v1v4)dv=v3dv1v43vdv1v4(v33v1v4)dv=I13I2, where I1=v3dv1v4 and I2=vdv1v4    ...(iii)  Let 1v4=tddv(1v4)=dtdv4v3=dtdvv3dv=dt4 Now, I1=dt4t=14logt=14log(1v4) And, I2=vdvdv=vdv1(v2)2ddv(v2)=dpdv 2v=dpdvvdv=dp2I2=12dp1p2=12×2log|1+p1p|=14log|1+v21v2| Substituting the values of I1 and I2 in equation (iii), we get: (v33v1v4)dv=14log(1v4)34log|v21+v2| Therefore, equation (ii) becomes:  14log(1v4)34log|1+v2|1v2=logx+logC14log[(1v4)(1+v21v2)3]=logCx(1+v2)4(1v2)2=(Cx)4 

Q5. Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.

Answer.  The equation of a circle in the first quadrant with centre (a,a) and radius (a) which  touches the coordinate axes is: (xa)2+(ya)2=a2    ...(i) Solutions Class 12 Maths Chapter-9 (Determinants)Miscellaneous Exercise  Differentiating equation (i) with respect to x, we get: 2(xa)+2(ya)dydx=0(xa)+(ya)y=0xa+yyay=0x+yya(1+y)=0a=x+yy1+y 

Q6. Find the general solution of the differential equation 

Answer. 

Q7. 

Answer. dydx+y2+y+1x2+x+1=0dydx=(y2+y+1)x2+x+1dyy2+y+1=dxx2+x+1dyy2+y+1+dxx2+x+1=0 Integrating both sides, we get:  dyy2+y+1+dxx2+x+1=Cdy(y+12)2+(32)2+dx(x+12)2+(32)2=C23tan1[y+122]+23tan1[x+122]=Ctan1[2y+13]+tan1[2x+13]=3C2 tan1[2y+13+2x+131(2y+1)3(2x+1)3]=3C2tan1[2x+2y+231(4xy+2x+2y+13)]=3C2 tan1[23(x+y+1)34xy2x2y1]=3C2tan1[3(x+y+1)2(1xy2xy)]=3C23(x+y+1)2(1xy2xy)=tan(3C2)=B, where B=tan(3C2)x+y+1=2B3(1xy2xy)x+y+1=A(1xy2xy), where A=2B3 Hence, the given result is proved.

Q8. 

Answer.  The differential equation of the given curve is: sinxcosydx+cosxsinydy=0sinxcosydx+cosxsinydycosxcosy=0tanxdx+tanydy=0log(secx)+log(secy)=logClog(secxsecy)=logCsecxsecy=C    ...(i)  The curve passes through point (0,π4)1×2=CC=2 On substituting C=2 in equation (i), we get: secxcosy=2secx12cosy=12 

Q9. 

Answer. (1+e2x)dy+(1+y2)exdx=0dy1+y2+exdx1+e2x=0 Integrating both sides, we get: tan1y+exdx1+e2x=C    ...(i) Let ex=tdtdxexdx=dtdxexdx=dt  Substituting these values in equation (i), we get: tan1y+dt1+t2=Ctan1y+tan1t=Ctan1y+tan1(ex)=C     ...(ii)  Therefore, equation (ii) becomes: tan11+tan11=Cπ4+π4=CC=π2  Substituting C=π2 in equation (ii), we get: tan1y+tan1(ex)=π2 This is the required particular solution of the given differential equation.

Q10. Solve the differential equation 

Answer. yeydx=(xexy+y2)dyyexydxdy=xexy+y2exy[ydxdyx]=y2exy[ydxdyx]y2=1   ...(i)  Let exy=z Differentiating it with respect to y, we get: ddy(exy)=dzdyexyddy(xy)=dzdyexy[ydxdyxy2]=dzdy    ...(ii) 

Q11. 

Answer. (xy)(dx+dy)=dxdy(xy+1)dy=(1x+y)dxdydx=1x+yxy+1dydx=1(xy)1+(xy)    ...(i)  Let xy=tddx(xy)=dtdx1dydx=dtdx1dtdx=dydx Substituting the values of xy and dydx in equation (i), we get:  1dtdx=1t1+tdtdx=1(1t1+t)dtdx=(1+t)(1t)1+tdtdx=2t1+t(1+tt)dt=2dx(1+1t)dt=2dx    ...(ii)  Integrating both sides, we get: t+log|t|=2x+C(xy)+log|xy|=2x+Clog|xy|=x+y+C    ...(iii) Now, y=1 at x=0 Therefore, equation ( iii ) becomes:  Tog 1=01+CC=1 

Q12. 

Answer. [e2xxyx]dxdy=1dydx=e2xxyxdydx+yx=e2xxdydx+Py=Q, where P=1x and Q=e2xx Now, I.F =epdx=e1xdx=e2x  The general solution of the given differential equation is given by, y( I.F. )=(Q× I.F. )dx+C 

Q13. 

Answer.  The given differential equation is: dydx+ycotx=4xcscx This equation is a linear differential equation of the form dydx+py=Q, where p=cotx and Q=4xcscx. Now, I.F =epdx=ecotxdx=elog|sinx|=sinx  The general solution of the given differential equation is given by, y( I.F. )=(Q×I.F.)dx+C ysinx=(4xcscxsinx)dx+Cysinx=4xdx+Cysinx=4x22+Cysinx=2x2+C    ...(i) y=0 at x=π2 Therefore, equation (i) becomes: 0=2×π24+CC=π22 

Q14. 

Answer. (x+1)dydx=2ey1dy2ey1=dxx+1eydy2ey=dxx+1 Integrating both sides, we get: eydy2ey=log|x+1|+logC    ...(i)  Let 2ey=tddy(2ey)=dtdyey=dtdyeydt=dt Substituting this value in equation (i), we get: dtt=log|x+1|+logC log|t|=log|C(x+1)|log|ey|=log|C(x+1)|12ey=C(x+1)2ey=1C(x+1)     ...(ii) Now, at x=0 and y=0, equation (ii) becomes:  21=1CC=1 Substituting C=1 in equation (ii), we get:  

Q15. The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?

Answer. Let the population at any instant (t) be y. It is given that the rate of increase of population is proportional to the number of inhabitants at any instant. dydtydydt=ky        (k is constent)dyy=kdt Integrating both sides, we get: log y = kt + C … (i) In the year 1999, t = 0 and y = 20000. Therefore, we get: log 20000 = C … (ii) In the year 2004, t = 5 and y = 25000. Therefore, we get: log25000=k5+Clog25000=5k+log200005k=log(2500020000)=log(54)k=15log(54)                         ...(iii)  In the year 2009,t=10 years.  Now, on substituting the values of t,k, and C in equation (i), we get: logy=10×15log(54)+log(20000)logy=log[20000×(54)2]y=20000×54×54y=31250 Hence, the population of the village in 2009 will be 31250.

Q16. 

Answer.  The given differential equation is: ydxxdyy=0ydxxdyxy=01xdx1ydy=0 Integrating both sides, we get: log|x|log|y|=logk 

Q17. The general solution of a differential equation of the type dxdy+P1x=Q1 is A. yep1dy=(Q1ep1dy)dy+C BeP1dx=(Qlep1dx)dx+C C. xep1dy=(Q1ep1dy)dy+C 

Answer. The integrating factor of the given differential equation dxdy+P1x=Q1 is eP1dy. The general solution of the differential equation is given by, x( I.F. )=(Q×I.F.)dy+C Solutions Class 12 Maths Chapter-9 (Determinants)Miscellaneous Exercise Hence, the correct answer is C.

Q18. 

Answer.  The given differential equation is: exdy+(yex+2x)dx=0exdydx+yex+2x=0dydx+y=2xex This is a linear differential equation of the form dydx+Py=Q, where P=1 and Q=2xex. Now, I.F =epdx=edx=ex The general solution of the given differential equation is given by, y( I.F. )=(Q×I.F.)dx+C