NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.9

NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.9

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.9 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.9

Exercise 7.9

Q1. Evaluate the definite integral : 

Answer.  Let I=14(x+1)dx(x+1)dx=x22+x=F(x) By second fundamental theorem of calculus , we obtain I=F(1)F(1) 

Q2. Evaluate the definite integral : x11xdx

Answer.  Let I=231xdx1xdx=log|x|=F(x) By second fundamental theorem of calculus , we obtain 

Q3. Evaluate the definite integral : 2(4x35x2+6x+9)dx

Answer.  Let I=(4x35x2+6x+9)dx(4x35x2+6x+9)dx=4(x44)5(x33)+6(x22)+9(x)=x45x33+3x2+9x=F(x) By second fundamental theorem of calculus , we obtain 

Q4. Evaluate the definite integral : 0xsin2xdx

Answer.  Let I=0πsin2xdxsin2xdx=(cos2x2)=F(x) By second fundamental theorem of calculus , we obtain 

Q5. Evaluate the definite integral : 

Answer.  Let I=0π2cos2xdxcos2xdx=(sin2x2)=F(x) By second fundamental theorem of calculus , we obtain 

Q6. Evaluate the definite integral : 

Answer.  Let I=46exdxexdx=ex=F(x) By second fundamental theorem of calculus , we obtain 

Q7. Evaluate the definite integral : 

Answer.  Let I=5πtanxdxtanxdx=log|cosx|=F(x) By second fundamental theorem of calculus , we obtain 

Q8. Evaluate the definite integral : 

Answer. I=ππ4cosecxdx cscxdx=log|cscxcotx|=F(x) By second fundamental theorem of calculus , we obtain 

Q9. Evaluate the definite integral : 04dx1x2

Answer.  Let I=04dx1x2dx1x2=sin1x=F(x) By second fundamental theorem of calculus , we obtain 

Q10. Evaluate the definite integral : dx1+x2

Answer.  Let I=dx1+x2dx1+x2=tan1x=F(x) By second fundamental theorem of calculus , we obtain 

Q11. Evaluate the definite integral : 23dxx21

Answer.  Let I=23dxx21dxx21=12log|x1x+1|=F(x) By second fundamental theorem of calculus , we obtain 

Q12. Evaluate the definite integral : 

Answer.  Let I=1π2cos2xdxcos2xdx=(1+cos2x2)dx=x2+sin2x4=12(x+sin2x2)=F(x) By second fundamental theorem of calculus , we obtain 

Q13. Evaluate the definite integral : 

Answer.  Let I=23xx2+1dxxx2+1dx=122xx2+1dx=12log(1+x2)=F(x) By second fundamental theorem of calculus , we obtain 

Q14. Evaluate the definite integral : 2x+35x2+1dx

Answer. I=042x+35x2+1dx 2x+35x2+1dx=155(2x+3)5x2+1dx=1510x+155x2+1dx=1510x5x2+1dx+315x2+1dx =1510x5x2+1dx+315(x2+15)dx=15log(5x2+1)+3515tan1x5=15log(5x2+1)+35tan1(5x)=F(x) By second fundamental theorem of calculus , we obtain 

Q15. Evaluate the definite integral : 01xex2dx

Answer.  Let I=0xex2dx Put x2=t2xdx=dt As x0,t0 and as x1,t1 By second fundamental theorem of calculus , we obtain 

Q16. Evaluate the definite integral : 

Answer. Let I=i25x2x2+4x+3dx Dividing 5x2 by x2+4x+3 we obtain  I=12{520x+15x2+4x+3}dx=12{5dx1220x+15x2+4x+3dx=[5x]121220x+15x2+4x+3dxI=5I1, where I=1220x+15x2+4x+3dx Consider I1=i220x+15x2+4x+8dx  Consider I1=1220x+15x2+4x+8dx Let 20x+15=Addx(x2+4x+3)+B=2Ax+(4A+B) Equating the coefficients of x and constant term, we obtain A=10 and B=25I1=102x+4x2+4x+3dx2512dxx2+4x+3 Let x2+4x+3=t(2x+4)dx=dt I1=10dtt25dx(x+2)212=10logt25[12log(x+21x+2+1)]=[10log(x2+4x+3)]1225[12log(x+1x+3)]12=[10log1510log8]25[12log3512log24]=[10log(5×3)10log(4×2)]252[log3log5log2+log4] =[10log5+10log310log410log2]252[log3log5log2+log4]=[10+252]log5+[10252]log4+[10252]log3+[10+252]log2=452log5452log452log3+52log2=452log5452log32 Substituting the value of I1 in (1), we obtain 

Q17. Evaluate the definite integral : 0π(2sec2x+x3+2)dx

Answer.  Let I=5π4(2sec2x+x3+2)dx(2sec2x+x3+2)dx=2tanx+x44+2x=F(x) By second fundamental theorem of calculus , we obtain 

Q18. Evaluate the definite integral : 

Answer.  Let I=0π(sin2x2cos2x2)dx=0π(cos2x2sin2x2)dx=0πcosxdxcosxdx=sinx=F(x) By second fundamental theorem of calculus , we obtain 

Q19. Evaluate the definite integral : 026x+3x2+4dx

Answer.  Let I=026x+3x2+4dx6x+3x2+4dx=32x+1x2+4dx=32xx2+4dx+31x2+4dx=3log(x2+4)+32tan1x2=F(x) By second fundamental theorem of calculus , we obtain 

Q20. Evaluate the definite integral : 

Answer. I=01(xex+sinπx4)dx (xex+sinπx4)dx=xexdx{(ddxx)exdx}dx+{cosπx4π4} =xexexdx4ππcosx4=xexex4ππcosx4=F(x) By second fundamental theorem of calculus , we obtain 

Q21. Choose the correct answer : 3dx1+x2 equals (A) π3 (B) 2π3 (C) π6 (D) 

Answer. dx1+x2=tan1x=F(x) By second fundamental theorem of calculus , we obtain 3dx1+x2=F(3)F(1)=tan13tan11=π3π4=π12 Hence, the correct Answer is D.

01xex2dx

Q22. Choose the correct answer : 023dx4+9x2 equals (A) π6 (B) π12 (C) π24 (D) π4

Answer. dx4+9x2=dx(2)2+(3x)2 Put 3x=t3dx=dtdx(2)2+(3x)2=13dt(2)2+t2=13[12tan1t2]=16tan1(3x2)=F(x) By second fundamental theorem of calculus , we obtain 023dx4+9x2=F(23)F(0)=16tan1(3223)16tan10=16tan110=16×π4=π24 Hence the correct answer is C

Chapter-7 (integrals)