Min menu

Pages

NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.8

NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.8

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.8 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.8

Exercise 7.8 

Q1. Evaluate the following definite integral as limit of sums : abxdx

Answer.  It is known that, abf(x)dx=(ba)limn1n[f(a)+f(a+h)++f(a+(n1)h)], where h=ban Here, a=a,b=b, and f(x)=x abxdx=(ba)limn1n[a+(a+h)(a+2h),a+(n1)h] =(ba)limn1n[(a+a+a++a)+(h+2h+3h++(n1)h)]=(ba)limn1n[na+h(1+2+3++(n1))] =(ba)limn1n[na+h{(n1)(n)2}]=(ba)limn1n[na+n(n1)h2]=(ba)limnnn[a+(n1)h2] =(ba)limn[a+(n1)(ba)2n]=(ba)limn[a+(11n)(ba)2]=(ba)[a+(ba)2] 

Q2. Evaluate the following definite integral as limit of sums : 05(x+1)dx

Answer.  Let I=05(x+1)dx It is known that, abf(x)dx=(ba)limn1n[f(a)+f(a+h)f(a+(n1)h)], where h=ban  Here, a=0,b=5, and f(x)=(x+1)h=50n=5n05(x+1)dx=(50)limn1n[f(0)+f(5n)++f((n1)5n)] =5limn1n[1+(5n+1)+{1+(5(n1)n)}]=5limn1n[(1+1+11)+[5n+25n+35n+(n1)5n]]=5limn1n[n+5n{1+2+3(n1)}] =5limn1n[n+5n(n1)n2]=5limn1n[n+5(n1)2] 

Q3. Evaluate the following definite integral as limit of sums : 

Answer. abf(x)dx=(ba)limn1n[f(a)+f(a+h)+f(a+2h)f{a+(n1)h}], where h=ban Here, a=2,b=3, and f(x)=x2 h=32n=1n23x2dx=(32)limn1n[f(2)+f(2+1n)+f(2+2n)f{2+(n1)1n}] =limn1n[(2)2+(2+1n)2+(2+2n)2+(2+(n1)n)2]=limn1n[22+{22+(1n)2+221n}++{(2)2+(n1)2n2+22(n1)n}] =limn1n[(22++22)+{(1n)2+(2n)2++(n1n)2}+22{1n+2n+3n++(n1)n}]=limn1n[4n+1n2{12+22+32+(n1)2}+4n{1+2++(n1)}] =limn1n[4n+1n2{n(n1)(2n1)6}+4n{n(n1)2}]=limn1n[4n+n(11n)(21n)6+4n42] 

Q4. Evaluate the following definite integral as limit of sums : 

Answer.  Let I=14(x2x)dx=14x2dx14 xdx  Let I=I1I2, where I1=x2dx and I2=xdx It is known that, abf(x)dx=(ba)limn1n[f(a)+f(a+h)+f(a+(n1)h)], where h=ban  For I1=14x2dxa=1,b=4, and f(x)=x2h=41n=3n I1=14x2dx=(41)limn1n[f(1)+f(1+h)++f(1+(n1)h)]=3limn1n[12+(1+3n)2+(1+23n)2+(1+(n1)3n)2]=3limn1n[12+{12+(3n)2+23n}++{12+((n1)3n)2+2(n1)3n}]