NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.3
NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.3 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 7.3
Q1. Find the integrals of the functions : sin2(2x+5) Q3. Find the integrals of the functions : cos 2x cos 4x cos 6x
Answer. It is known that, cosAcosB=12{cos(A+B)+cos(A−B)}∴∫cos2x(cos4xcos6x)dx=∫cos2x[12{cos(4x+6x)+cos(4x−6x)}]dx=12∫{cos2xcos10x+cos2xcos(−2x)}dx=12∫{cos2xcos10x+cos22x}dx It is known that, cosAcosB=12{cos(A+B)+cos(A−B)}∴∫cos2x(cos4xcos6x)dx=∫cos2x[12{cos(4x+6x)+cos(4x−6x)}]dx=12∫{cos2xcos10x+cos2xcos(−2x)}dx=12∫{cos2xcos10x+cos22x}dx =12∫[{12cos(2x+10x)+cos(2x−10x)}+(1+cos4x2)]dx=14∫(cos12x+cos8x+1+cos4x)dx=14[sin12x12+sin8x8+x+sin4x4]+C
Q4. Find the integrals of the function : sin3(2x+1)
Answer. Let I=∫sin3(2x+1)⇒∫sin3(2x+1)dx=∫sin2(2x+1)⋅sin(2x+1)dx Let I=∫sin3(2x+1)⇒∫sin3(2x+1)dx=∫sin2(2x+1)⋅sin(2x+1)dx =∫(1−cos2(2x+1))sin(2x+1)dx Let cos(2x+1)=t=∫(1−cos2(2x+1))sin(2x+1)dx Let cos(2x+1)=t ⇒−2sin(2x+1)dx=dt⇒sin(2x+1)dx=−dt2⇒−2sin(2x+1)dx=dt⇒sin(2x+1)dx=−dt2 ⇒I=−12∫(1−t2)dt=−12{t−t33}=−12{cos(2x+1)−cos3(2x+1)3}=−cos(2x+1)2+cos3(2x+1)6+C
Q5. Find the integrals of the function : sin3xcos3x
Answer. Let I=∫sin3xcos3x⋅dx=∫cos3x⋅sin2x⋅sinx⋅dx=∫cos3x(1−cos2x)sinx⋅dxLetcosx=t⇒−sinx⋅dx=dt⇒I=−∫t3(1−t2)dt Let I=∫sin3xcos3x⋅dx=∫cos3x⋅sin2x⋅sinx⋅dx=∫cos3x(1−cos2x)sinx⋅dxLetcosx=t⇒−sinx⋅dx=dt⇒I=−∫t3(1−t2)dt =−∫(t3−t5)dt=−{t44−t66}+C=−{cos4x4−cos6x6}+C=cos6x6−cos4x4+C
Q6. Find the integrals of the function : sin x sin 2x sin 3x
Answer. It is known that, sinAsinB=12{cos(A−B)−cos(A+B)}∴∫sinxsin2xsin3xdx=∫[sinx⋅12{cos(2x−3x)−cos(2x+3x)}]dx=12∫(sinxcos(−x)−sinxcos5x)dxsinAsinB=12{cos(A−B)−cos(A+B)}∴∫sinxsin2xsin3xdx=∫[sinx⋅12{cos(2x−3x)−cos(2x+3x)}]dx=12∫(sinxcos(−x)−sinxcos5x)dx =12∫(sinxcosx−sinxcos5x)dx=12∫sin2x2dx−12∫sinxcos5xdx=14[−cos2x2]−12∫{12sin(x+5x)+sin(x−5x)}dx=12∫(sinxcosx−sinxcos5x)dx=12∫sin2x2dx−12∫sinxcos5xdx=14[−cos2x2]−12∫{12sin(x+5x)+sin(x−5x)}dx =−cos2x8−14∫(sin6x+sin(−4x))dx=−cos2x8−14[−cos6x3+cos4x4]+C=−cos2x8−18[−cos6x3+cos4x2]+C=18[cos6x3−cos4x2−cos2x]+C
Q7. Find the integrals of the function : sin 4x sin 8x
Answer. It is known that, sinAsinB=12cos(A−B)−cos(A+B)sinAsinB=12cos(A−B)−cos(A+B) ∴∫sin4xsin8xdx=∫{12cos(4x−8x)−cos(4x+8x)}dx=12∫(cos(−4x)−cos12x)dx=12∫(cos4x−cos12x)dx=12[sin4x4−sin12x12]
Q8. Find the integrals of the function : 1−cosx1+cosx
Answer. 1−cosx1+cosx=2sin222cos2x2sin2x2=1−cosx and 2cos2x2=1+cosx]1−cosx1+cosx=2sin222cos2x2sin2x2=1−cosx and 2cos2x2=1+cosx] =tan2x2=(sec2x2−1)∴∫1−cosx1+cosxdx=∫(sec2x2−1)dx=tan2x2=(sec2x2−1)∴∫1−cosx1+cosxdx=∫(sec2x2−1)dx =[x−21−x]+C=2tanx2−x+C
Q9. Find the integrals of the function : cosx1+cosx
Answer. cosx1+cosx=cos2x2−sin2x22cos2x2[cosx=cos2x2−sin2x2 and cosx=2cos2x2−1]cosx1+cosx=cos2x2−sin2x22cos2x2[cosx=cos2x2−sin2x2 and cosx=2cos2x2−1] =12[1−tan2x2]∴cosx1+cosxdx=12∫(1−tan2x2)dx=12∫(1−sec2x2+1)dx=12[1−tan2x2]∴cosx1+cosxdx=12∫(1−tan2x2)dx=12∫(1−sec2x2+1)dx =12[2x−tanx212]+C=x−tanx2+C
Q10. Find the integrals of the function : sin4x
Answer. sin4x=sin2xsin2x=(1−cos2x2)(1−cos2x2)=14(1−cos2x)2=14[1+cos22x−2cos2x]=14[1+(1+cos4x2)−2cos2x]sin4x=sin2xsin2x=(1−cos2x2)(1−cos2x2)=14(1−cos2x)2=14[1+cos22x−2cos2x]=14[1+(1+cos4x2)−2cos2x] =14[1+12+12cos4x−2cos2x]